Repair.IT – Table Tennis Table Support Leg

I was at my local community centre before Easter. They have a number of table tennis tables which get pulled out regularly (almost daily) for people to play table tennis. With all of the use, and sometimes heavy hands, the tables are quite worn and have a few faults. One in particular had a broken support leg, which made it unusable. I had a quick look at it and thought that all it would need is a few brackets to fix the rolling support leg, and it could be as good as new.

I had a look at what Bunnings had to offer and spoke to the community centre about it and offered to fix it for the cost of the parts, which I estimated to be about $30-40. Then it was a matter of getting the parts, then on Thursday last week, I was able to get the leg removed to bring home where I can do the repairs.

DSC_0323

Here is the support leg removed from the table and separated into its various parts, mainly removing the wheels. The top section was welded but this is what had broken.

DSC_0324

A T shaped mending plate was the right size, two of these, one on each side, then a couple of right angle brackets for support. The metal is quite thin on the leg, only 1mm, so I had some 40mm square hollow steel section in my garage, so cut off about 30cm of it. This reinforcing tube which is 2mm thick would fit inside the horizontal leg, but because it is a bit smaller than the inside, would need some spacers to raise it to the top of the leg.

DSC_0325

Then additional spacers for the side, since I wanted to get it more or less in the middle of the hollow leg.

DSC_0326

Here I have fastened the reinforcing tube with four Tek screws. Due to the thickness of the tube, I decided to pre-drill 4mm holes where I would install the Tek screws for the right angle brackets.

DSC_0327

I decided that I should clamp it all together and mark out the holes for the mending plate for both sides. The drilling could then be done easily on my milling machine than with a hand-held drill.

DSC_0328

It was a matter of fastening a lot more Tek screws, and I ended with a leg that is much stronger than the original – maybe a bit of overkill, but not bad for less than $40 in parts. I need to wait until after Anzac Day for the community centre to open before I can install the leg and fasten a couple more screws, and also replace a number of nuts and various bits that were also missing.

If I didn’t help them with this, they would probably have to spend many hundreds of dollars on a new table which is probably not as good as the repaired table. They have some more tables for me to look at too!

Repair.IT – Overheating Presario SR5120AN motherboard

Remember two and a half years ago, approximately, I repaired my Compaq Presario SR5120AN motherboard which had a number of failed capacitors?  Ok, it was some time ago, so here is the link.

https://j0hn88.wordpress.com/2014/12/22/reveal-it-faulty-capacitors-on-presario-sr5120an-motherboard/

At the time, five capacitors had failed, but there were still four others of the same brand and size on the motherboard. I checked them with an ESR meter and they all passed. Fast forward to a month ago – I noticed that my computer cpu fan was getting louder, sometimes normal then suddenly high speed and this kept happening. I ran a utility to check the CPU temperature and it was …  99 degrees, wow! No wonder the fan was on turbos a lot of the time.

I shut down and took the computer apart to reveal the motherboard.

DSC_0308

Two of those same original capacitors were showing the symptoms of failure – see the bulging top and black spots. After some effort, I was able to remove these two capacitors, then replace them with the ones in that little bag – I originally bought ten of these 1800uF 6.3V electrolytic high temperature capacitors. I checked the remaining two on the board and they check out fine.

So, reassemble the computer, and power on – leave it on for a while, and I can see that the CPU temperature is sitting reasonably stable at about 80 degrees. This is still quite hot and would appear to be still abnormal. Since I still have three spares left over, why not just replace the remaining two capacitors and be done with it.

That is what I did – took out the other two capacitors, replaced them with new ones. While I was doing this, I checked the capacitors with my ESR meter, which showed that these two were still ok, but anyway I have new ones in the motherboard now. Once the computer was up and running again, leave it for a while and then it was looking good so I decided to run the Passmark Performance Test, which stresses out the computer.

OpenHardwareMonitor

This is what the CPU and graphics card temperatures were during the test and then the cooldown period afterwards. The CPU maximum went to about 93 degrees but then back down and sitting stable at 54-60 degrees. This is amazing and shows that even though the ESR meter indicated that the capacitors were ok, replacing them reduced the average temperature dramatically. Why is that – maybe the capacitance has changed? Wait, I can check this!

Just over a year ago, I had bought from eBay, a Mega328 Transistor and component tester. I can connect the parts I have removed and compare with new parts.

These two are the failed capacitors. They appear to be back to back diodes with differing forward voltages.

DSC_0319

Here is a new one – my final remaining capacitor. The value is 1829uF, ESR is good, with Vloss of 2.5%.

Here are the two apparently good ones that I replaced. These also appear to be good as far as the tester is concerned, however replacing these two also brought down my average temperature of the CPU. Why? I don’t really have an answer for this, but maybe someone has.

Right now as I am writing this, my CPU temperature is sitting at around 80 degrees, with CPU load at about 85% since my antivirus scan has been running for some time, but certainly nowhere near the 99 degrees at idle that it was a month ago. It has been a few weeks now, and all seems to be well.

Remake.IT – Raspberry Pi 3 with 7″ Touch Screen and housing

A while ago, I bought a couple of the new Raspberry Pi 3’s and at the same time, bought a 7″ touch screen and a housing (which was on special) for it from element14.

http://au.element14.com/raspberry-pi/raspberrypi-display/raspberry-pi-7inch-touchscreen/dp/2473872

http://au.element14.com/multicomp/cbrpp-ts-blk-wht/raspberry-pi-touchscreen-enclosure/dp/249469102

As usual, there can be a delay between purchase and actually assembly or use, due to other commitments. Anyway, a couple of nights ago, I decided to assemble the Raspberry Pi with the touchscreen. The touchscreen was pre-assembled, so all that I had to do was to attach the screen cable to the Raspberry Pi 3, then connect the four wires to provide power and the data signals to the touchscreen controller board. By the way, the instructions did not say that the SDA and SCL signals had to be connected and showed only connecting the ground and +5V pins.

I also needed to download the latest Raspbian operating system, and copy the image to a micro-SD card which I did the next day. Then finally plugging in the card, and fastening the Raspberry Pi down with four tiny screens. Next was placing all this in the housing. All went together and I connected up a suitable power supply and powered up.

Voila! Hmm, the display is upside down – ok, and the touchscreen wasn’t working. Checking out the FAQ on the appropriate sites indicates a fix for the display – to rotate by 180 degrees in the /boot/config.txt then a check to see if the touchscreen hardware was seen by the OS.  Yes, the drivers are active so what is going on? I decided that it was time to open it up and check the touchscreen cable.

To my surprise the cable was disconnected and sticking up at a right angle – then the penny dropped. Putting the case on, must have disconnected the cable, which was connected, but now is not.

DSC_0310

This is the touchscreen cable, the one that is attached to that black square chip – the cable is a little bent at the edge which meant that something was pressing on it. Turning the back of the case around showed me the problem.

DSC_0311

The cutout for the touchscreen cable has a sharp edge, which was pressing down on the edge of the touchscreen assembly with the chip on it, and since the thinner cable is not that long, pushing down on it would pull that thin cable out. Which is what must have happened. I measured the distance from the edge of the case to that touchscreen assembly, then marked on the case where I needed to remove that sharp edge. I got out my trusty file which happened to be almost the right width at the area I needed to file out, and proceeded to remove some plastic material making that marked area more rounded which would reduce the pressure on that assembly.

DSC_0312

Here is the final result. After careful reassembly and checking of the cable which was can just see through slots in the casing for the HDMI socket, I can confirm that the touchscreen cable is still attached.

DSC_0316

After powering up, I now have touch!